Math 5852 Problems

Fall 2018

  1. (Due 9/5/18) Show that a sequence of functions \( \{f_n\} \) fails to converge to a function \(f\) uniformly on a set \(E\) if and only if there is some positive \(\varepsilon_0\) so that a sequence \(\{x_k\}\) of points in \(E\) and a subsequence \(\{f_{n_k}\}\) can be found such that $$|f_{n_k}(x_k) - f(x_k)| \ge \varepsilon_0.$$ (9.3.13, Thomson & Bruckner)

  2. (Due 9/10/18) Show that \(\left\{\frac{nx}{1+nx} \right\}_{n=1}^\infty\) converges uniformly on \([a, \infty)\) for any \(a > 0.\) \( \ \) Does this sequence converge uniformly on \([0, \infty)\)? \( \ \) Explain.

  3. (Due 9/17/18) Compute the limit $$\lim_{n\to \infty} \int_0^1 \frac{e^{-nt}}{\sqrt t} \ dt.$$ (9.5.10, Thomson & Bruckner)
  4. (Due 10/3/18) Find the sum of \(\displaystyle \sum_{n=1}^\infty \frac{1}{n(n+2) 2^n}\). \( \ \)(Hint: Consider the function \(\displaystyle f(x) = \sum_{n=1}^\infty \frac{x^n}{n(n+2)}\).)
  5. (Due 10/8/18) Express \(\displaystyle \int_0^1 x^x dx\) as a sum \(\displaystyle \sum_{n=0}^\infty a_n. \ \) (Hint: \(x^x = e^{x \ln x}. \ \) Use the power series for \(e^x.\))
  6. (Due 10/17/18) Find \(m_1\), \(m_2\), \(m_3\), and \(m_4\) such that for all \(x \in \mathbb{R}^n\) $$m_1 \|x\|_1 \le \|x\| \le m_2 \|x\|_1$$ and $$m_3 \|x\|_\infty \le \|x\| \le m_4 \|x\|_\infty$$ and such that these \(m_i\)'s are best possible.