Seventeenth Annual Calculus Competition

April 8, 2006

- 1. Find all points on the curve $x^2 + 2xy + 2y^2 = 45$ at which the slope of the tangent line is -2.
- 2. Let $f(x) = xe^{-x}$. Find $f^{(2006)}(0)$.
- 3. Assume that f'' is continuous and that f(1) = 3, f'(1) = 2, and $\int_0^1 f(x) dx = 5$. Find the value of $\int_0^1 x^2 f''(x) dx$.
- 4. Evaluate: $\lim_{x \to \infty} (\sqrt[3]{x^3 + 18x^2} x)$
- 5. Evaluate: $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i}{n^2} \sin\left(\frac{i^2 \pi}{n^2}\right).$
- 6. Find the volume of the solid obtained by rotating about the x-axis the region bounded by $x^2 + y^2 = 2$, x + y = 2, and the x-axis.
- 7. Show that the equation $\cos x = x \sin x$ has exactly one solution in the interval $(0, \frac{\pi}{2})$.
- 8. Evaluate: $\int \frac{1}{e^{2x} + 3e^x + 2} dx.$
- 9. Find the maximum volume of a rectangular solid in the first octant with one vertex at the origin and the opposite vertex on the plane 2x + 3y + 6z = 18.
- 10. Evaluate: $\int_0^4 \int_{\sqrt{y}}^2 x^5 e^{x^2 y} dx dy$