Eleventh Annual Calculus Competition

May 6, 2000

- 1. Find all points (x_0, y_0) on the curve $y = x^2 + \frac{3}{4}$ such that the line tangent to this curve at (x_0, y_0) passes through $(\frac{1}{2}, 0)$.
- 2. Find the area of the region that lies inside both $r = 1 + \cos \theta$ and $r = 1 \cos \theta$.
- 3. Show that $x^2 \le 4e^{x-2}$ for all $x \ge 0$.
- 4. Evaluate: $\lim_{x \to 0} \frac{\int_0^x \sin t^2 dt}{2\sin(x) \sin(2x)}$
- 5. Evaluate: $\int \frac{1}{\ln(x^x e^x)} dx$
- 6. Find a real number k that minimizes the integral $\int_0^1 |x^2 k^2| \ dx$.
- 7. Find the volume of the solid generated by rotating about the y-axis the region inside the circle $(x-4)^2 + y^2 = 4$ and outside the circle $(x-4)^2 + y^2 = 1$.
- 8. Let $f(x) = \sum_{n=0}^{\infty} \left(\frac{3x-1}{7}\right)^n$. Determine all x such that $f(x) \ge 1$.
- 9. Evaluate: $\int_0^2 \int_y^2 y \sqrt{1+x^3} \ dx dy$
- 10. Find the point at which the plane tangent to $x^2 3xy + 4z^2 = 2$ at (2, 1, 1) intersects the z-axis.